
NSF CISE CAREER Workshop

Amal Ahmed
Northeastern University 4.4.2016

My career and my CAREER…
• Area: Programming languages, compiler correctness

• Training: PhD Princeton; postdoc Harvard

• Tenure-track: Indiana Univ. 2009-11; Northeastern 2011-

My career and my CAREER…
• Area: Programming languages, compiler correctness

• Training: PhD Princeton; postdoc Harvard

• Tenure-track: Indiana Univ. 2009-11; Northeastern 2011-

• CAREER story:
- PhD/postdoc work: proof method for equivalence of

programs that scales to realistic languages

- compiler correctness is an equivalence problem

- existing compiler verification techniques don’t allow linking
with code compiled from different languages, need new idea!

My career and my CAREER…
• Area: Programming languages, compiler correctness

• Training: PhD Princeton; postdoc Harvard

• Tenure-track: Indiana Univ. 2009-11; Northeastern 2011-

• CAREER story:
- PhD/postdoc work: proof method for equivalence of

programs that scales to realistic languages

- compiler correctness is an equivalence problem

- existing compiler verification techniques don’t allow linking
with code compiled from different languages, need new idea!

- CAREER: Verified Compilers for a Multi-Language World

My career and my CAREER…
• Area: Programming languages, compiler correctness

• Training: PhD Princeton; postdoc Harvard

• Tenure-track: Indiana Univ. 2009-11; Northeastern 2011-

• CAREER story:
- PhD/postdoc work: proof method for equivalence of

programs that scales to realistic languages

- compiler correctness is an equivalence problem

- existing compiler verification techniques don’t allow linking
with code compiled from different languages, need new idea!

- CAREER: Verified Compilers for a Multi-Language World

- submitted 2014; already had 2 grants, had served on panels

Your career and CAREER

Your career and CAREER
• CAREER award is different from other grants

- 5 years
- integration of education with research

Your career and CAREER
• CAREER award is different from other grants

- 5 years
- integration of education with research
- it’s about the rest of your career: decide what you want

to do, connect to what you’ve done, tell that story

Your career and CAREER
• CAREER award is different from other grants

- 5 years
- integration of education with research
- it’s about the rest of your career: decide what you want

to do, connect to what you’ve done, tell that story

• My mentor’s advice: Think big. Think long-term.

Your career and CAREER
• CAREER award is different from other grants

- 5 years
- integration of education with research
- it’s about the rest of your career: decide what you want

to do, connect to what you’ve done, tell that story

• My mentor’s advice: Think big. Think long-term.

• Caveat: 500K for 5 years isn’t enough to fund something
extremely ambitious; I’ll discuss strategies to deal with that

Two key questions…

• Why this research?

• Why you?

 Think about these in tandem as you “develop your story”

Getting started
• Get samples of (successful) proposals

Getting started
• Get samples of (successful) proposals

• Read CAREER solicitation

Getting started
• Get samples of (successful) proposals

• Read CAREER solicitation

• Start thinking early (at least 1 year before you submit)
- decide on problem

- develop/refine an idea for solving it

- do preliminary work

- decide on concrete things you’ll propose to do

- assess/adjust scope of project

- read related work (and collect bibliographic references)

- PITCH your idea to mentors

Getting started
• Get samples of (successful) proposals

• Read CAREER solicitation

• Start thinking early (at least 1 year before you submit)
- decide on problem

- develop/refine an idea for solving it

- do preliminary work

- decide on concrete things you’ll propose to do

- assess/adjust scope of project

- read related work (and collect bibliographic references)

- PITCH your idea to mentors

- Lather, rinse, repeat

Pitching your proposal
• Verbally pitch your proposal to senior people whose

judgment you trust (mentors, former advisors)
- their reactions, questions, suggestions will help you

understand the strengths/weaknesses

- ask them what they think of scope

- ask what they think of your assumptions: reasonable? or
might they be viewed as obstacle to practicality/scalability?

- refine your explanation and/or your plans based on feedback

Pitching your proposal
• Verbally pitch your proposal to senior people whose

judgment you trust (mentors, former advisors)
- their reactions, questions, suggestions will help you

understand the strengths/weaknesses

- ask them what they think of scope

- ask what they think of your assumptions: reasonable? or
might they be viewed as obstacle to practicality/scalability?

- refine your explanation and/or your plans based on feedback

- knowing what senior people think reduces doubt which
makes writing easier

Importance of preliminary work
• For proposals based on truly novel (untested) ideas:

- it helps to have a publication that serves as initial evidence

- unpublished preliminary work is valuable as it helps when
writing technical sections — gives reviewers sense that you
know (more than them!) what problems will arise and have
reasonable solutions

Importance of preliminary work
• For proposals based on truly novel (untested) ideas:

- it helps to have a publication that serves as initial evidence

- unpublished preliminary work is valuable as it helps when
writing technical sections — gives reviewers sense that you
know (more than them!) what problems will arise and have
reasonable solutions

• Important to be several steps ahead of your reviewers
- bit of “overthinking” is quite useful when writing grants!

Verified Compilers for a Multi-Language World

Tyllvm GT

casts

LLVM backend
(optimizations, code gen)

Link (add casts/coercions)
Compile

(insert
 wrappers
for safe

coercion)

compiler
verified
compiler

verified
compiler

verified
compiler

LLVM IR

LLVM IR type-safe LLVM IR dependently typed

ML Coq/F*C/C++ Rust

casts

This proposal Future workCurrently

Figure 1: Research planned as part of this proposal and potential future work

Specifying compositional compiler correctness for a multi-language world Informally, if a component
eS compiles to a component eT then compiler correctness should require that eS is “equivalent” to eT . But
how can we formalize this notion of “equivalence” between source and target components? Observe that
to use a compiled component eT , we will link it with some other target-level component e0T to obtain a
whole program that can be run. Intuitively, therefore, compiler correctness should guarantee that the opera-
tional behavior of this resulting target program is the same as the operational behavior of eS linked with e0T .
Therefore, to formally state that “a component is compiled correctly,” we need to formalize the semantics
of interoperability between source and target code. For a multi-pass compiler we propose to do this in a
modular fashion. For instance, if the compiler consists of two passes, from source language S to intermedi-
ate language I to target language T , we define a combined language SIT that embeds these three languages
and formalizes the semantics of interoperability between each pair of adjacent languages using boundaries
in the style of Matthews and Findler’s multi-language semantics [43]. We can stack these boundaries to
allow interoperability between the source and target of the compiler, e.g., SI(IT (eT)), which we abbrevi-
ate to SIT (eT), allows a target component eT to be used from within an S-language expression. Compiler
correctness can now be stated as observational equivalence in the combined language: if eS compiles to eT ,
then eS is observationally equivalent to SIT (eT). Direct proofs of observational equivalence—also known
as contextual equivalence—are known to be intractable. We will define a logical relation for the combined
language that corresponds to contextual equivalence and use that to carry out the proof of compiler correct-
ness. Note that we do not use the multi-language semantics for running actual multi-language programs;
its purpose is to serve as a specification of the desired source-target relationship, allowing us to state and
prove compiler correctness. This specification also enables reasoning about the whole-program behavior of
eT linked with e0T in terms of the whole-program behavior of eS linked with SIT (e0T). Most importantly,
note that we have not imposed any restrictions on the provenance of e0T . We give further details in Section 2.

Why ML and Rust? We focus on the statically typed languages ML and Rust because they offer more
interesting semantic challenges for interoperability: that is, one of our goals is to try to maximize interoper-
ability with less precisely typed and type-unsafe components while ensuring that those interactions respect
the ML or Rust type system. We believe that these interoperability challenges make compositional compiler

3

Scope: too ambitious or not enough?
• Think through details of what proposal promises,

milestones and timelines
- sweet spot: a touch ambitious for 5 years, but could be done

if no serious setbacks

Scope: too ambitious or not enough?
• Think through details of what proposal promises,

milestones and timelines
- sweet spot: a touch ambitious for 5 years, but could be done

if no serious setbacks

• Strategies for big, highly ambitious projects:
- can you leverage existing/upcoming work done by others?

(Future work by others: need letters of collaboration)

- can you complement NSF funds with industry funding?

Scope: too ambitious or not enough?
• Think through details of what proposal promises,

milestones and timelines
- sweet spot: a touch ambitious for 5 years, but could be done

if no serious setbacks

• Strategies for big, highly ambitious projects:
- can you leverage existing/upcoming work done by others?

(Future work by others: need letters of collaboration)

- can you complement NSF funds with industry funding?

- acknowledge that proposal is ambitious!

Acknowledge proposal is ambitious
• Two examples

program takes a step then it continues to be well formed SSA; and if the program is well formed then either
it can take a step or it is in one of the defined set of stuck states. Vellvm also provides a set of tools to extract
LLVM IR from Coq so it can be processed by the standard LLVM tools. Vellvm gives us a useful starting
point; without the Vellvm formalization the current proposal would not be feasible!

Tyllvm: statically type-safe LLVM IR As a starting point we will identify a statically type-safe subset
of the LLVM IR as formalized in Vellvm and modify Vellvm’s static safety theorems so that the progress
lemma holds without the possibility of a well formed program configuration being stuck. This will require
eliminating arbitrary casts, memory deallocation (free), and anything that leads to undefined behavior
(undef) from the language. We will then extend the type system with polymorphism and existential types
and any other extensions needed to develop a type-preserving compiler from our idealized ML (source
language M) to Tyllvm (target language T).

Tentatively, the compiler will consist of four languages and three passes: a closure conversion pass from
M to C, an explicit allocation pass (where the data representation strategy is made explicit) from C to A, and
code generation pass from A to T.

Multi-language for compiler correctness (MCAT) To state compiler correctness, we will embed all
four of the compiler’s languages into a combined language MCAT by defining interoperability between the
adjacent languages in the compilation pipeline. The design of the interoperability semantics between M and
C (for the closure conversion pass) and between C and A (for the explicit allocation pass) is already well
understood. We will leverage the multi-language and logical relation from our recent work with Perconti [52]
which covers closure conversion and explicit allocation for System F with recursive types. In preliminary

work with the PI’s student Phillip Mates, we have already proved compositional correctness of closure
conversion in the presence of ML-style mutable references. The presence of mutable references required a
novel extension to our logical relation for the multi-language system. We expect to be able to extend our
explicit allocation pass with mutable references in a similar manner.

The design of an interoperability semantics between language A and Tyllvm (i.e., for the code generation
pass) will present interesting challenges. In the language A, code still has a compositional structure even
though tuples and closures are allocated on the heap—that is, a component is a simply a term eA. However,
at the Tyllvm level, that compositional structure is lost. To define interoperability between A components
and T (Tyllvm) components, we first have to identify what exactly constitutes a Tyllvm component—that is,
since there are no “terms” in Tyllvm, what is the shape of an eT that we can put under a boundary AT eT ?

Fortunately, in preliminary work with Perconti, we have already answered this question in the context of
an idealized typed assembly language (TAL), which is even more lower level that Tyllvm!3 For the purpose
of the multi-language semantics, a TAL (or Tyllvm) component is comprised of a number of basic blocks.
Thus, eT denotes a pair (b0,b) of the currently executing basic block b0 and the rest of the blocks b that
comprise that component (which corresponds now to a Tyllvm function body). The next question is how
do we run the term AT eT ? As in Section 2, intuitively we want to run eT till we have a value vT and
then convert that value to the language A. But running the eT in Tyllvm will ultimately end with a return
instruction. How do we distinguish between a normal return within Tyllvm from a return to language A?
The solution is to introduce a special ret-to-A pseudo-instruction as part of the extensions we make when
defining the multi-language semantics. When AT eT has reduced to AT (ret-to-A vT), we simply convert
vT to an A value in the usual type-directed manner. We are reasonably confident that we will be able to use
ideas from our TAL work to design interoperability between A and Tyllvm. The only caveat is the added
complexity added by Tyllvm’s SSA form. We will investigate whether it might be helpful to leverage a
proper type system to keep track of the various invariants required for SSA form, along the lines proposed

3Specifically, our TAL does not have call and ret instructions, which makes it harder to identify the beginning and end of a
component. For TAL, we had to add support to the type system to keep track of where the return address was at any point in time,
and identify jumps to a return address as the end of a component. Fortunately, we will not have to do that for Tyllvm.

10

program takes a step then it continues to be well formed SSA; and if the program is well formed then either
it can take a step or it is in one of the defined set of stuck states. Vellvm also provides a set of tools to extract
LLVM IR from Coq so it can be processed by the standard LLVM tools. Vellvm gives us a useful starting
point; without the Vellvm formalization the current proposal would not be feasible!

Tyllvm: statically type-safe LLVM IR As a starting point we will identify a statically type-safe subset
of the LLVM IR as formalized in Vellvm and modify Vellvm’s static safety theorems so that the progress
lemma holds without the possibility of a well formed program configuration being stuck. This will require
eliminating arbitrary casts, memory deallocation (free), and anything that leads to undefined behavior
(undef) from the language. We will then extend the type system with polymorphism and existential types
and any other extensions needed to develop a type-preserving compiler from our idealized ML (source
language M) to Tyllvm (target language T).

Tentatively, the compiler will consist of four languages and three passes: a closure conversion pass from
M to C, an explicit allocation pass (where the data representation strategy is made explicit) from C to A, and
code generation pass from A to T.

Multi-language for compiler correctness (MCAT) To state compiler correctness, we will embed all
four of the compiler’s languages into a combined language MCAT by defining interoperability between the
adjacent languages in the compilation pipeline. The design of the interoperability semantics between M and
C (for the closure conversion pass) and between C and A (for the explicit allocation pass) is already well
understood. We will leverage the multi-language and logical relation from our recent work with Perconti [52]
which covers closure conversion and explicit allocation for System F with recursive types. In preliminary

work with the PI’s student Phillip Mates, we have already proved compositional correctness of closure
conversion in the presence of ML-style mutable references. The presence of mutable references required a
novel extension to our logical relation for the multi-language system. We expect to be able to extend our
explicit allocation pass with mutable references in a similar manner.

The design of an interoperability semantics between language A and Tyllvm (i.e., for the code generation
pass) will present interesting challenges. In the language A, code still has a compositional structure even
though tuples and closures are allocated on the heap—that is, a component is a simply a term eA. However,
at the Tyllvm level, that compositional structure is lost. To define interoperability between A components
and T (Tyllvm) components, we first have to identify what exactly constitutes a Tyllvm component—that is,
since there are no “terms” in Tyllvm, what is the shape of an eT that we can put under a boundary AT eT ?

Fortunately, in preliminary work with Perconti, we have already answered this question in the context of
an idealized typed assembly language (TAL), which is even more lower level that Tyllvm!3 For the purpose
of the multi-language semantics, a TAL (or Tyllvm) component is comprised of a number of basic blocks.
Thus, eT denotes a pair (b0,b) of the currently executing basic block b0 and the rest of the blocks b that
comprise that component (which corresponds now to a Tyllvm function body). The next question is how
do we run the term AT eT ? As in Section 2, intuitively we want to run eT till we have a value vT and
then convert that value to the language A. But running the eT in Tyllvm will ultimately end with a return
instruction. How do we distinguish between a normal return within Tyllvm from a return to language A?
The solution is to introduce a special ret-to-A pseudo-instruction as part of the extensions we make when
defining the multi-language semantics. When AT eT has reduced to AT (ret-to-A vT), we simply convert
vT to an A value in the usual type-directed manner. We are reasonably confident that we will be able to use
ideas from our TAL work to design interoperability between A and Tyllvm. The only caveat is the added
complexity added by Tyllvm’s SSA form. We will investigate whether it might be helpful to leverage a
proper type system to keep track of the various invariants required for SSA form, along the lines proposed

3Specifically, our TAL does not have call and ret instructions, which makes it harder to identify the beginning and end of a
component. For TAL, we had to add support to the type system to keep track of where the return address was at any point in time,
and identify jumps to a return address as the end of a component. Fortunately, we will not have to do that for Tyllvm.

10

program takes a step then it continues to be well formed SSA; and if the program is well formed then either
it can take a step or it is in one of the defined set of stuck states. Vellvm also provides a set of tools to extract
LLVM IR from Coq so it can be processed by the standard LLVM tools. Vellvm gives us a useful starting
point; without the Vellvm formalization the current proposal would not be feasible!

Tyllvm: statically type-safe LLVM IR As a starting point we will identify a statically type-safe subset
of the LLVM IR as formalized in Vellvm and modify Vellvm’s static safety theorems so that the progress
lemma holds without the possibility of a well formed program configuration being stuck. This will require
eliminating arbitrary casts, memory deallocation (free), and anything that leads to undefined behavior
(undef) from the language. We will then extend the type system with polymorphism and existential types
and any other extensions needed to develop a type-preserving compiler from our idealized ML (source
language M) to Tyllvm (target language T).

Tentatively, the compiler will consist of four languages and three passes: a closure conversion pass from
M to C, an explicit allocation pass (where the data representation strategy is made explicit) from C to A, and
code generation pass from A to T.

Multi-language for compiler correctness (MCAT) To state compiler correctness, we will embed all
four of the compiler’s languages into a combined language MCAT by defining interoperability between the
adjacent languages in the compilation pipeline. The design of the interoperability semantics between M and
C (for the closure conversion pass) and between C and A (for the explicit allocation pass) is already well
understood. We will leverage the multi-language and logical relation from our recent work with Perconti [52]
which covers closure conversion and explicit allocation for System F with recursive types. In preliminary

work with the PI’s student Phillip Mates, we have already proved compositional correctness of closure
conversion in the presence of ML-style mutable references. The presence of mutable references required a
novel extension to our logical relation for the multi-language system. We expect to be able to extend our
explicit allocation pass with mutable references in a similar manner.

The design of an interoperability semantics between language A and Tyllvm (i.e., for the code generation
pass) will present interesting challenges. In the language A, code still has a compositional structure even
though tuples and closures are allocated on the heap—that is, a component is a simply a term eA. However,
at the Tyllvm level, that compositional structure is lost. To define interoperability between A components
and T (Tyllvm) components, we first have to identify what exactly constitutes a Tyllvm component—that is,
since there are no “terms” in Tyllvm, what is the shape of an eT that we can put under a boundary AT eT ?

Fortunately, in preliminary work with Perconti, we have already answered this question in the context of
an idealized typed assembly language (TAL), which is even more lower level that Tyllvm!3 For the purpose
of the multi-language semantics, a TAL (or Tyllvm) component is comprised of a number of basic blocks.
Thus, eT denotes a pair (b0,b) of the currently executing basic block b0 and the rest of the blocks b that
comprise that component (which corresponds now to a Tyllvm function body). The next question is how
do we run the term AT eT ? As in Section 2, intuitively we want to run eT till we have a value vT and
then convert that value to the language A. But running the eT in Tyllvm will ultimately end with a return
instruction. How do we distinguish between a normal return within Tyllvm from a return to language A?
The solution is to introduce a special ret-to-A pseudo-instruction as part of the extensions we make when
defining the multi-language semantics. When AT eT has reduced to AT (ret-to-A vT), we simply convert
vT to an A value in the usual type-directed manner. We are reasonably confident that we will be able to use
ideas from our TAL work to design interoperability between A and Tyllvm. The only caveat is the added
complexity added by Tyllvm’s SSA form. We will investigate whether it might be helpful to leverage a
proper type system to keep track of the various invariants required for SSA form, along the lines proposed

3Specifically, our TAL does not have call and ret instructions, which makes it harder to identify the beginning and end of a
component. For TAL, we had to add support to the type system to keep track of where the return address was at any point in time,
and identify jumps to a return address as the end of a component. Fortunately, we will not have to do that for Tyllvm.

10

Acknowledge proposal is ambitious
• Two examples

PI mentored a female freshman at Northeastern, Kaila Corrington, who is now a sophomore majoring in
Computer Science and has twice served as a teaching assistant—referred to as “tutors” at Northeastern—for
the introductory CS class.

The PI has been a speaker at the NSF and ACM-SIGPLAN sponsored Programming Languages Men-
toring Workshop (PLMW) in 2012 and 2013. She was a co-organizer for the 2014 edition of PLMW (with
Benjamin Pierce and Alan Schmitt). PLMW is aimed at broadening the participation of women and under-
represented minorities in the field of programming languages. PLMW is co-located with POPL each year.
It brings many undergraduate, masters, and first- and second-year PhD students to the POPL conference and
introduces them to the field of programming language theory. The PI has also been an organizer of the NSF
and ACM-SIGPLAN sponsored Oregon PL Summer School (OPLSS) in 2013 and 2014, in addition to lec-
turing at OPLSS the last three years. The PI will continue to work intensively with undergraduates. While
at Indiana, she worked with William Bowman, who is currently pursuing his PhD in PL at Northeastern.

5 Schedule of Proposed Work

We present a timeline for our proposed work in Table 1. The PI realizes that the proposed work is substantial
and the schedule overly ambitious for a single PI and student, but plans to augment the NSF funding with
gifts from industry and work in collaboration with colleagues at Northeastern and Mozilla Research.

Task Year 1 Year 2 Year 3 Year 4 Year 5
Verified compiler: ML to type-safe LLVM (Research Task 1)

Type-safe LLVM (Tyllvm) and type-preserving compiler from ML
Multi-language design, logical relation, compiler correctness

Tyllvm GT: Interoperability of type-safe and type-unsafe LLVM (RT 2)
Interop when type-safe supports only LLVM types
Interop when type-safe supports abstract types
Extend ML compiler correctness proofs to target Tyllvm GT
Compiler: Tyllvm GT to LLVM IR

Verified compiler: Rust to Tyllvm⌦ GT (RT 3)
Tyllvm⌦: type-safe LLVM with affine types
Type-preserving compiler from Rust to Tyllvm⌦

Multi-language, logical relation, compiler correctness
Tyllvm⌦ GT: Interop of affine types with unrestricted and unsafe
Extend Rust compiler correctness proofs to target Tyllvm⌦ GT

Educational tasks
Textbook on Logical Relations
Course development and refinement
Developing and offering summer school courses

Table 1: A rough schedule for accomplishing the research and educational goals of this proposal.

6 Previous Work and Accomplishments

To conduct the research outlined in this proposal requires expertise in a mix of topics. The PI is an expert
on the logical relations proof method and the semantics of mutable state, both of which will factor heavily
in this project. Over the last decade, her work has shown how to scale logical relations to languages with
increasingly sophisticated features, including higher-order state, polymorphism, and concurrency [16, 11,
12, 5, 9, 23, 64]. Her recent worked has shown how to scale logical relations to multi-language systems in
order to reason about parametricity and equivalence [42, 8, 52].

The PI is also an expert on gradual typing, contracts, multi-language semantics [42, 14, 10, 8, 52] and,
specifically, has worked on secure interoperability between polymorphic and dynamically typed code [42,

14

program takes a step then it continues to be well formed SSA; and if the program is well formed then either
it can take a step or it is in one of the defined set of stuck states. Vellvm also provides a set of tools to extract
LLVM IR from Coq so it can be processed by the standard LLVM tools. Vellvm gives us a useful starting
point; without the Vellvm formalization the current proposal would not be feasible!

Tyllvm: statically type-safe LLVM IR As a starting point we will identify a statically type-safe subset
of the LLVM IR as formalized in Vellvm and modify Vellvm’s static safety theorems so that the progress
lemma holds without the possibility of a well formed program configuration being stuck. This will require
eliminating arbitrary casts, memory deallocation (free), and anything that leads to undefined behavior
(undef) from the language. We will then extend the type system with polymorphism and existential types
and any other extensions needed to develop a type-preserving compiler from our idealized ML (source
language M) to Tyllvm (target language T).

Tentatively, the compiler will consist of four languages and three passes: a closure conversion pass from
M to C, an explicit allocation pass (where the data representation strategy is made explicit) from C to A, and
code generation pass from A to T.

Multi-language for compiler correctness (MCAT) To state compiler correctness, we will embed all
four of the compiler’s languages into a combined language MCAT by defining interoperability between the
adjacent languages in the compilation pipeline. The design of the interoperability semantics between M and
C (for the closure conversion pass) and between C and A (for the explicit allocation pass) is already well
understood. We will leverage the multi-language and logical relation from our recent work with Perconti [52]
which covers closure conversion and explicit allocation for System F with recursive types. In preliminary

work with the PI’s student Phillip Mates, we have already proved compositional correctness of closure
conversion in the presence of ML-style mutable references. The presence of mutable references required a
novel extension to our logical relation for the multi-language system. We expect to be able to extend our
explicit allocation pass with mutable references in a similar manner.

The design of an interoperability semantics between language A and Tyllvm (i.e., for the code generation
pass) will present interesting challenges. In the language A, code still has a compositional structure even
though tuples and closures are allocated on the heap—that is, a component is a simply a term eA. However,
at the Tyllvm level, that compositional structure is lost. To define interoperability between A components
and T (Tyllvm) components, we first have to identify what exactly constitutes a Tyllvm component—that is,
since there are no “terms” in Tyllvm, what is the shape of an eT that we can put under a boundary AT eT ?

Fortunately, in preliminary work with Perconti, we have already answered this question in the context of
an idealized typed assembly language (TAL), which is even more lower level that Tyllvm!3 For the purpose
of the multi-language semantics, a TAL (or Tyllvm) component is comprised of a number of basic blocks.
Thus, eT denotes a pair (b0,b) of the currently executing basic block b0 and the rest of the blocks b that
comprise that component (which corresponds now to a Tyllvm function body). The next question is how
do we run the term AT eT ? As in Section 2, intuitively we want to run eT till we have a value vT and
then convert that value to the language A. But running the eT in Tyllvm will ultimately end with a return
instruction. How do we distinguish between a normal return within Tyllvm from a return to language A?
The solution is to introduce a special ret-to-A pseudo-instruction as part of the extensions we make when
defining the multi-language semantics. When AT eT has reduced to AT (ret-to-A vT), we simply convert
vT to an A value in the usual type-directed manner. We are reasonably confident that we will be able to use
ideas from our TAL work to design interoperability between A and Tyllvm. The only caveat is the added
complexity added by Tyllvm’s SSA form. We will investigate whether it might be helpful to leverage a
proper type system to keep track of the various invariants required for SSA form, along the lines proposed

3Specifically, our TAL does not have call and ret instructions, which makes it harder to identify the beginning and end of a
component. For TAL, we had to add support to the type system to keep track of where the return address was at any point in time,
and identify jumps to a return address as the end of a component. Fortunately, we will not have to do that for Tyllvm.

10

program takes a step then it continues to be well formed SSA; and if the program is well formed then either
it can take a step or it is in one of the defined set of stuck states. Vellvm also provides a set of tools to extract
LLVM IR from Coq so it can be processed by the standard LLVM tools. Vellvm gives us a useful starting
point; without the Vellvm formalization the current proposal would not be feasible!

Tyllvm: statically type-safe LLVM IR As a starting point we will identify a statically type-safe subset
of the LLVM IR as formalized in Vellvm and modify Vellvm’s static safety theorems so that the progress
lemma holds without the possibility of a well formed program configuration being stuck. This will require
eliminating arbitrary casts, memory deallocation (free), and anything that leads to undefined behavior
(undef) from the language. We will then extend the type system with polymorphism and existential types
and any other extensions needed to develop a type-preserving compiler from our idealized ML (source
language M) to Tyllvm (target language T).

Tentatively, the compiler will consist of four languages and three passes: a closure conversion pass from
M to C, an explicit allocation pass (where the data representation strategy is made explicit) from C to A, and
code generation pass from A to T.

Multi-language for compiler correctness (MCAT) To state compiler correctness, we will embed all
four of the compiler’s languages into a combined language MCAT by defining interoperability between the
adjacent languages in the compilation pipeline. The design of the interoperability semantics between M and
C (for the closure conversion pass) and between C and A (for the explicit allocation pass) is already well
understood. We will leverage the multi-language and logical relation from our recent work with Perconti [52]
which covers closure conversion and explicit allocation for System F with recursive types. In preliminary

work with the PI’s student Phillip Mates, we have already proved compositional correctness of closure
conversion in the presence of ML-style mutable references. The presence of mutable references required a
novel extension to our logical relation for the multi-language system. We expect to be able to extend our
explicit allocation pass with mutable references in a similar manner.

The design of an interoperability semantics between language A and Tyllvm (i.e., for the code generation
pass) will present interesting challenges. In the language A, code still has a compositional structure even
though tuples and closures are allocated on the heap—that is, a component is a simply a term eA. However,
at the Tyllvm level, that compositional structure is lost. To define interoperability between A components
and T (Tyllvm) components, we first have to identify what exactly constitutes a Tyllvm component—that is,
since there are no “terms” in Tyllvm, what is the shape of an eT that we can put under a boundary AT eT ?

Fortunately, in preliminary work with Perconti, we have already answered this question in the context of
an idealized typed assembly language (TAL), which is even more lower level that Tyllvm!3 For the purpose
of the multi-language semantics, a TAL (or Tyllvm) component is comprised of a number of basic blocks.
Thus, eT denotes a pair (b0,b) of the currently executing basic block b0 and the rest of the blocks b that
comprise that component (which corresponds now to a Tyllvm function body). The next question is how
do we run the term AT eT ? As in Section 2, intuitively we want to run eT till we have a value vT and
then convert that value to the language A. But running the eT in Tyllvm will ultimately end with a return
instruction. How do we distinguish between a normal return within Tyllvm from a return to language A?
The solution is to introduce a special ret-to-A pseudo-instruction as part of the extensions we make when
defining the multi-language semantics. When AT eT has reduced to AT (ret-to-A vT), we simply convert
vT to an A value in the usual type-directed manner. We are reasonably confident that we will be able to use
ideas from our TAL work to design interoperability between A and Tyllvm. The only caveat is the added
complexity added by Tyllvm’s SSA form. We will investigate whether it might be helpful to leverage a
proper type system to keep track of the various invariants required for SSA form, along the lines proposed

3Specifically, our TAL does not have call and ret instructions, which makes it harder to identify the beginning and end of a
component. For TAL, we had to add support to the type system to keep track of where the return address was at any point in time,
and identify jumps to a return address as the end of a component. Fortunately, we will not have to do that for Tyllvm.

10

program takes a step then it continues to be well formed SSA; and if the program is well formed then either
it can take a step or it is in one of the defined set of stuck states. Vellvm also provides a set of tools to extract
LLVM IR from Coq so it can be processed by the standard LLVM tools. Vellvm gives us a useful starting
point; without the Vellvm formalization the current proposal would not be feasible!

Tyllvm: statically type-safe LLVM IR As a starting point we will identify a statically type-safe subset
of the LLVM IR as formalized in Vellvm and modify Vellvm’s static safety theorems so that the progress
lemma holds without the possibility of a well formed program configuration being stuck. This will require
eliminating arbitrary casts, memory deallocation (free), and anything that leads to undefined behavior
(undef) from the language. We will then extend the type system with polymorphism and existential types
and any other extensions needed to develop a type-preserving compiler from our idealized ML (source
language M) to Tyllvm (target language T).

Tentatively, the compiler will consist of four languages and three passes: a closure conversion pass from
M to C, an explicit allocation pass (where the data representation strategy is made explicit) from C to A, and
code generation pass from A to T.

Multi-language for compiler correctness (MCAT) To state compiler correctness, we will embed all
four of the compiler’s languages into a combined language MCAT by defining interoperability between the
adjacent languages in the compilation pipeline. The design of the interoperability semantics between M and
C (for the closure conversion pass) and between C and A (for the explicit allocation pass) is already well
understood. We will leverage the multi-language and logical relation from our recent work with Perconti [52]
which covers closure conversion and explicit allocation for System F with recursive types. In preliminary

work with the PI’s student Phillip Mates, we have already proved compositional correctness of closure
conversion in the presence of ML-style mutable references. The presence of mutable references required a
novel extension to our logical relation for the multi-language system. We expect to be able to extend our
explicit allocation pass with mutable references in a similar manner.

The design of an interoperability semantics between language A and Tyllvm (i.e., for the code generation
pass) will present interesting challenges. In the language A, code still has a compositional structure even
though tuples and closures are allocated on the heap—that is, a component is a simply a term eA. However,
at the Tyllvm level, that compositional structure is lost. To define interoperability between A components
and T (Tyllvm) components, we first have to identify what exactly constitutes a Tyllvm component—that is,
since there are no “terms” in Tyllvm, what is the shape of an eT that we can put under a boundary AT eT ?

Fortunately, in preliminary work with Perconti, we have already answered this question in the context of
an idealized typed assembly language (TAL), which is even more lower level that Tyllvm!3 For the purpose
of the multi-language semantics, a TAL (or Tyllvm) component is comprised of a number of basic blocks.
Thus, eT denotes a pair (b0,b) of the currently executing basic block b0 and the rest of the blocks b that
comprise that component (which corresponds now to a Tyllvm function body). The next question is how
do we run the term AT eT ? As in Section 2, intuitively we want to run eT till we have a value vT and
then convert that value to the language A. But running the eT in Tyllvm will ultimately end with a return
instruction. How do we distinguish between a normal return within Tyllvm from a return to language A?
The solution is to introduce a special ret-to-A pseudo-instruction as part of the extensions we make when
defining the multi-language semantics. When AT eT has reduced to AT (ret-to-A vT), we simply convert
vT to an A value in the usual type-directed manner. We are reasonably confident that we will be able to use
ideas from our TAL work to design interoperability between A and Tyllvm. The only caveat is the added
complexity added by Tyllvm’s SSA form. We will investigate whether it might be helpful to leverage a
proper type system to keep track of the various invariants required for SSA form, along the lines proposed

3Specifically, our TAL does not have call and ret instructions, which makes it harder to identify the beginning and end of a
component. For TAL, we had to add support to the type system to keep track of where the return address was at any point in time,
and identify jumps to a return address as the end of a component. Fortunately, we will not have to do that for Tyllvm.

10

Proposal structure
• My overview section was long (>4 pages)

Proposal structure
• My overview section was long (>4 pages)

- explained problem, idea for solution, and why I’m proposing
these particular pieces of work; gave institutional context, and
summarized education and outreach plans

Proposal structure
• My overview section was long (>4 pages)

- explained problem, idea for solution, and why I’m proposing
these particular pieces of work; gave institutional context, and
summarized education and outreach plans

• Picture on page 3 that visually presents key ideas and plans

Verified Compilers for a Multi-Language World

Tyllvm GT

casts

LLVM backend
(optimizations, code gen)

Link (add casts/coercions)
Compile

(insert
 wrappers
for safe

coercion)

compiler
verified
compiler

verified
compiler

verified
compiler

LLVM IR

LLVM IR type-safe LLVM IR dependently typed

ML Coq/F*C/C++ Rust

casts

This proposal Future workCurrently

Figure 1: Research planned as part of this proposal and potential future work

Specifying compositional compiler correctness for a multi-language world Informally, if a component
eS compiles to a component eT then compiler correctness should require that eS is “equivalent” to eT . But
how can we formalize this notion of “equivalence” between source and target components? Observe that
to use a compiled component eT , we will link it with some other target-level component e0T to obtain a
whole program that can be run. Intuitively, therefore, compiler correctness should guarantee that the opera-
tional behavior of this resulting target program is the same as the operational behavior of eS linked with e0T .
Therefore, to formally state that “a component is compiled correctly,” we need to formalize the semantics
of interoperability between source and target code. For a multi-pass compiler we propose to do this in a
modular fashion. For instance, if the compiler consists of two passes, from source language S to intermedi-
ate language I to target language T , we define a combined language SIT that embeds these three languages
and formalizes the semantics of interoperability between each pair of adjacent languages using boundaries
in the style of Matthews and Findler’s multi-language semantics [43]. We can stack these boundaries to
allow interoperability between the source and target of the compiler, e.g., SI(IT (eT)), which we abbrevi-
ate to SIT (eT), allows a target component eT to be used from within an S-language expression. Compiler
correctness can now be stated as observational equivalence in the combined language: if eS compiles to eT ,
then eS is observationally equivalent to SIT (eT). Direct proofs of observational equivalence—also known
as contextual equivalence—are known to be intractable. We will define a logical relation for the combined
language that corresponds to contextual equivalence and use that to carry out the proof of compiler correct-
ness. Note that we do not use the multi-language semantics for running actual multi-language programs;
its purpose is to serve as a specification of the desired source-target relationship, allowing us to state and
prove compiler correctness. This specification also enables reasoning about the whole-program behavior of
eT linked with e0T in terms of the whole-program behavior of eS linked with SIT (e0T). Most importantly,
note that we have not imposed any restrictions on the provenance of e0T . We give further details in Section 2.

Why ML and Rust? We focus on the statically typed languages ML and Rust because they offer more
interesting semantic challenges for interoperability: that is, one of our goals is to try to maximize interoper-
ability with less precisely typed and type-unsafe components while ensuring that those interactions respect
the ML or Rust type system. We believe that these interoperability challenges make compositional compiler

3

Proposal structure
• My overview section was long (>4 pages)

- explained problem, idea for solution, and why I’m proposing
these particular pieces of work; gave institutional context, and
summarized education and outreach plans

• Rest:
- technical sections (7.5 pages)

- education plan (2 pages)

- schedule of proposed work (< 0.5 page)

- previous work and accomplishments (< 0.5 page)

- results from prior NSF support (0.5 page)

- summary of broader impacts (< 0.5 page)

Education plan

• Why this education plan?

• Why you?

 Think about these in tandem as you “develop your story”

Education plan
• Propose something you already have a track record in

- otherwise start early, make connections, lay the groundwork

• Proposing new course: does your institution need it?

• Choose something you care about and want to do anyway

• Be specific about plans and how you’ll measure outcomes

Education plan
• Propose something you already have a track record in

- otherwise start early, make connections, lay the groundwork

• Proposing new course: does your institution need it?

• Choose something you care about and want to do anyway

• Be specific about plans and how you’ll measure outcomes

• My education/outreach plan built on:
- teaching at well-known PL summer school 3 years in a row

- integrating 3 first-year undergrads into research

- requests for book on proof method for program equivalence

- need for grad course on “principles of compiler verification”

Timeline
• Lots of thinking, refining, pitching: mid-2012 to April 2014

- developed picture

• 6 weeks before: write project summary

• 5 weeks before: picture for page 3, table with milestones

• 4 weeks before: get letters of collaboration

• Spent a lot of time on first section, later sections were
quicker to write

Best advice I received…
• Why this research / education plan? Why you?

• Picture on page 3

• Think big. Think long-term.
- CAREER can be an opportunity to step back and decide what

you want to do in your career (beyond just the next few
papers). Use the opportunity to bring the strands of your
research together into something bigger, more coherent.

